Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Braz. j. med. biol. res ; 44(5): 445-452, May 2011. ilus, tab
Artigo em Inglês | LILACS | ID: lil-586508

RESUMO

Gadolinium (Gd) blocks intra- and extracellular ATP hydrolysis. We determined whether Gd affects vascular reactivity to contractile responses to phenylephrine (PHE) by blocking aortic ectonucleoside triphosphate diphosphohydrolase (E-NTPDase). Wistar rats of both sexes (260-300 g, 23 females, 7 males) were used. Experiments were performed before and after incubation of aortic rings with 3 µM Gd. Concentration-response curves to PHE (0.1 nM to 0.1 mM) were obtained in the presence and absence of endothelium, after incubation with 100 µM L-NAME, 10 µM losartan, or 10 µM enalaprilat. Gd significantly increased the maximum response (control: 72.3 ± 3.5; Gd: 101.3 ± 6.4 percent) and sensitivity (control: 6.6 ± 0.1; Gd: 10.5 ± 2.8 percent) to PHE. To investigate the blockade of E-NTDase activity by Gd, we added 1 mM ATP to the bath. ATP reduced smooth muscle tension and Gd increased its relaxing effect (control: -33.5 ± 4.1; Gd: -47.4 ± 4.1 percent). Endothelial damage abolished the effect of Gd on the contractile responses to PHE (control: 132.6 ± 8.6; Gd: 122.4 ± 7.1 percent). L-NAME + Gd in the presence of endothelium reduced PHE contractile responses (control/L-NAME: 151.1 ± 28.8; L-NAME + Gd: 67.9 ± 19 percent AUC). ATP hydrolysis was reduced after Gd administration, which led to ATP accumulation in the nutrient solution and reduced ADP concentration, while adenosine levels remained the same. Incubation with Gd plus losartan and enalaprilat eliminated the pressor effects of Gd. Gd increased vascular reactivity to PHE regardless of the reduction of E-NTPDase activity and adenosine production. Moreover, the increased reactivity to PHE promoted by Gd was endothelium-dependent, reducing NO bioavailability and involving an increased stimulation of angiotensin-converting enzyme and angiotensin II AT1 receptors.


Assuntos
Animais , Feminino , Masculino , Ratos , Aorta/efeitos dos fármacos , Gadolínio/farmacologia , Fenilefrina/farmacologia , Vasoconstrição/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Anti-Hipertensivos/farmacologia , Aorta/fisiologia , Relação Dose-Resposta a Droga , Enalaprilato/farmacologia , Endotélio Vascular/efeitos dos fármacos , Losartan/farmacologia , NG-Nitroarginina Metil Éster/farmacologia , Ratos Wistar , Vasoconstrição/fisiologia , Vasodilatação/fisiologia
2.
Braz J Med Biol Res ; 44(5): 445-52, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21445527

RESUMO

Gadolinium (Gd) blocks intra- and extracellular ATP hydrolysis. We determined whether Gd affects vascular reactivity to contractile responses to phenylephrine (PHE) by blocking aortic ectonucleoside triphosphate diphosphohydrolase (E-NTPDase). Wistar rats of both sexes (260-300 g, 23 females, 7 males) were used. Experiments were performed before and after incubation of aortic rings with 3 µM Gd. Concentration-response curves to PHE (0.1 nM to 0.1 mM) were obtained in the presence and absence of endothelium, after incubation with 100 µM L-NAME, 10 µM losartan, or 10 µM enalaprilat. Gd significantly increased the maximum response (control: 72.3 ± 3.5; Gd: 101.3 ± 6.4%) and sensitivity (control: 6.6 ± 0.1; Gd: 10.5 ± 2.8%) to PHE. To investigate the blockade of E-NTDase activity by Gd, we added 1 mM ATP to the bath. ATP reduced smooth muscle tension and Gd increased its relaxing effect (control: -33.5 ± 4.1; Gd: -47.4 ± 4.1%). Endothelial damage abolished the effect of Gd on the contractile responses to PHE (control: 132.6 ± 8.6; Gd: 122.4 ± 7.1%). L-NAME + Gd in the presence of endothelium reduced PHE contractile responses (control/L-NAME: 151.1 ± 28.8; L-NAME + Gd: 67.9 ± 19% AUC). ATP hydrolysis was reduced after Gd administration, which led to ATP accumulation in the nutrient solution and reduced ADP concentration, while adenosine levels remained the same. Incubation with Gd plus losartan and enalaprilat eliminated the pressor effects of Gd. Gd increased vascular reactivity to PHE regardless of the reduction of E-NTPDase activity and adenosine production. Moreover, the increased reactivity to PHE promoted by Gd was endothelium-dependent, reducing NO bioavailability and involving an increased stimulation of angiotensin-converting enzyme and angiotensin II AT1 receptors.


Assuntos
Aorta/efeitos dos fármacos , Gadolínio/farmacologia , Fenilefrina/farmacologia , Vasoconstrição/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Animais , Anti-Hipertensivos/farmacologia , Aorta/fisiologia , Relação Dose-Resposta a Droga , Enalaprilato/farmacologia , Endotélio Vascular/efeitos dos fármacos , Feminino , Losartan/farmacologia , Masculino , NG-Nitroarginina Metil Éster/farmacologia , Ratos , Ratos Wistar , Vasoconstrição/fisiologia , Vasodilatação/fisiologia
3.
Neuroscience ; 180: 191-200, 2011 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-21315806

RESUMO

Studies have shown that seizures in young animals lead to later cognitive deficits. There is evidence that long-term potentiation (LTP) and long-term depression (LTD) might contribute to the neural basis for learning and memory mechanism and might be modulated by ATP and/or its dephosphorylated product adenosine produced by a cascade of cell-surface transmembrane enzymes, such as E-NTPDases (ecto-nucleoside triphosphate diphosphohydrolases) and ecto-5'-nucleotidase. Thus, we have investigated if hippocampal ecto-nucleotidase activities are altered at different time periods after one episode of seizure induced by kainic acid (KA) in 7 days old rats. We also have evaluated if 90 day-old rats previously submitted to seizure induced by KA at 7 days of age presented cognitive impairment in Y-maze behavior task. Our results have shown memory impairment of adult rats (Postnatal day 90) previously submitted to one single seizure episode in neonatal period (Postnatal day 7), which is accompanied by an increased ATP hydrolysis in hippocampal synaptosomes. The metabolism of ATP evaluated by HPLC confirmed that ATP hydrolysis was faster in adult rats treated with KA in neonatal period than in controls. Surprisingly, the mRNA and protein levels as seen by PCR and Western blot, respectively, were not altered by the KA administration in early age. Since we have found an augmented hydrolysis of ATP and this nucleotide seems to be important to LTP induction, we could assume that impairment of memory and learning observed in adult rats which have experienced a convulsive episode in postnatal period may be a consequence of the increased ATP hydrolysis. These findings correlate the purinergic signaling to the cognitive deficits induced by neonatal seizures and contribute to a better understanding about the mechanisms of seizure-induced memory dysfunction.


Assuntos
Trifosfato de Adenosina/metabolismo , Transtornos Cognitivos/enzimologia , Hipocampo/metabolismo , Nucleosídeo-Trifosfatase/metabolismo , Convulsões/fisiopatologia , Animais , Antígenos CD/metabolismo , Apirase/metabolismo , Western Blotting , Cromatografia Líquida de Alta Pressão , Transtornos Cognitivos/etiologia , Convulsivantes/toxicidade , Expressão Gênica , Perfilação da Expressão Gênica , Hipocampo/fisiopatologia , Ácido Caínico/toxicidade , Masculino , Aprendizagem em Labirinto/fisiologia , Pirofosfatases/metabolismo , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Convulsões/complicações , Convulsões/metabolismo
4.
Braz. j. med. biol. res ; 22(3): 303-14, 1989. ilus, tab
Artigo em Inglês | LILACS | ID: lil-70684

RESUMO

1. The synaptosomal fraction isolated from hypothalamus of adult rats on sucrose density gradient hydrolyzes the labile phosphatase from ATP and ADP, thereby satisfying the general definition of apyrase activity. 2. The parallel behavior of ATPase and ADPase activities under different reaction conditions suggests the presence of a "true" apyrase enzyme. The optimum conditions for the are the same for both nucleotides: pH 8.0, 0.6 mM nucleotide and 1.5 mM cation. At temperatures between 10 and 40-C, both activities increase with no change in the ATP/ADP hydrolysis ratio. Thermal inactivation or inhibition of the enzyme activity by iodoacetamide, p-hydroxynercuribenzoate or 2- mercaptoethanol affected the hydrolysis of both substrates in a similar manner. 3- Adenylate Kinase and phyrophosphatase activities were not detected in the preparation. 4. The enzyme is located on the outer surface of the synaptosomal membrane: intact and lysed synaptosomes have similar activity and the supernatant obtained by centrifugation of intact synaptosomal preparations does not hydrolyze ATP or ADP


Assuntos
Ratos , Animais , Apirase/metabolismo , Hipotálamo/enzimologia , Sinaptossomos/enzimologia , Cinética , L-Lactato Desidrogenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...